

The impact of experience on
software developer performance

Derek Jones
Knowledge Software Ltd

derek@knosof.co.uk

mailto:derek@knosof.co.uk

My Background

What developers actually wrote

 Compiler writer – front ends, back ends, language translators

 Static analysis – finding faults

What developers meant to write

 Book- The New C Standard: An Economic and Cultural Commentary
 www.knosof.co.uk/cbook/cbook.html

Introduction

Cognitive psychology

Predicting developer performance

A hypothesis
 Source code measurements
 Experiment
 Results

Human Mental Characteristics

Orders-of-magnitude
 10-4 - 10-2 Biological band
 10-1 - 10+1 Cognitive band
 10+2 - 10+5 Social band

Abilities
 Built-in – autonomic nervous system
 Learned

Some Performance Factors

Performance improves with Practice
 Response time, error rate

 E = c P-m

Power law of forgetting
 Retention rate decreases with time
 R = k T-n

Developer Performance

What improves?
 How much; how to measure; cost of measurement
 Formula to calculate...

Source code
 My interest; lots available; can be measured

Developers spend time interacting with code
 Lots and lots of time
 Doing things not generally done elsewhere

Binary Operator Precedence

Lots of rules

 13'ish rules (shared by C, C++, Java, Perl, Python, C#)

 x + y | z

Amenably to measurement

 Source code
 Developer performance

Hypothesis

Every source occurrence provides practice
 Relative percentage a measure of relative practice

More practice aids learning/retention
 Practice only occurs when a decision has to be made
 Occurrences rare enough that performance not 'saturated'
 P = x + y ;
 Q = a + b | c ;

Prediction
 More source code occurrences → better developer performance

Source Measurements
What measured
 Large C programs
 Visible source
 Binary operators common to C/C++/Java/Perl/etc.
 Operator pairs in expressions

 x = y + z ;
 a = b + c * d ;

Ignored (not considered to be operators)

 = . -> [] ()

The Experiment

The ACCU
 C and C++ user group: now includes Java, C#, Perl + others
 Annual conference: 250+ professional developers
 Willing to make lunchtime slot available

Practical constraints
 Time: 40 minutes
 Venue: Room at a conference
 Subjects: Volunteers willing to give time during lunch

What Subjects asked to do
Three stage problem, repeated

Remember information

 zip = 4;
 zap = 8;
 bat = 6;

Time filler task

 x + y * z
 p || q >> r

Recall information

Results '06/'07 Overview

Numbers
 Subjects (years experience): 17 (14.6) /6 (14.5)
 Answers: 123.5/116.2 sd 35.0
 Percent correct: 66.7/63.3 sd 8.7
 Random answers, binomial distribution: 0.1% prob > 60% correct

Bradley-Terry Statistics

 / * ^ + - & << | < % && == || !=

 Highest Lowest

Performance/Source Correlation

Order statements to minimize STM requirements
 Minimize Forgetability

33% incorrect!?!

Implication for faults in real code
 2% of expressions contain two or more binary operators
 Implies almost 1% of expressions 'wrong'

'Naked' expressions rare in code
 Expressions generally exist within a context
 Expressions often contain context information

Context Information

 x + y | z

 arith + context_clue | bit

Source Measurements

Names of operand identifiers
Arithmetic names: size, len, count

Bitwise names: flags, status, mask

Boolean names: finished, done, started

Anonymous names: val, temp, field

Experimental Manipulation

 arith + arith_bit_anon | bit

Result '07 Naming

 arith + arith_bit_bool_anon | bit

Same context 76.3 (96,56,58)
Match higher/Not match lower 72.5
Match higher/Match lower 61.5
Not match higher/Not match lower 64.4
Not match higher/Match lower 43.4

Conclusion

Occurrence/performance correlation
 Exists for experienced developers
 Unexperienced developers?

Use of non-precedence information
 Developers associate some words with some operators
 Operator/operand spacing?

TODO
 Measurements of other language source

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

